SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase.
نویسندگان
چکیده
Internal tandem duplication (ITD) in the juxtamembrane portion of Fms-like tyrosine kinase 3 (FLT3), a type III receptor tyrosine kinase (RTK), is the most common molecular defect associated with acute myeloid leukemia (AML). The high prevalence of this activating mutation makes it a potential target for molecularly based therapy. Indolinone tyrosine kinase inhibitors have known activity against KIT, another member of the type III RTK family. Given the conserved homology between members of this family, we postulated that the activity of some KIT inhibitors would extend to FLT3. We used various leukemic cell lines (BaF3, MV 4-11, RS 4;11) to test the activity of indolinone compounds against the FLT3 kinase activity of both wild-type (WT) and ITD isoforms. Both SU5416 and SU5614 were capable of inhibiting autophosphorylation of ITD and WT FLT3 (SU5416 concentration that inhibits 50% [IC(50)], 100 nM; and SU5614 IC(50) 10 nM). FLT3-dependent activation of the downstream signaling proteins mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) was also inhibited by treatment in the same concentration ranges. FLT3 inhibition by SU5416 and SU5614 resulted in reduced proliferation (IC(50), 250 nM and 100 nM, respectively) and induction of apoptosis of FLT3 ITD-positive leukemic cell lines. Treatment of these cells with an alternative growth factor (granulocyte-macrophage colony-stimulating factor [GM-CSF]) restored MAPK signaling and cellular proliferation, demonstrating specificity of the observed inhibitory effects. We conclude that SU5416 and SU5614 are potent inhibitors of FLT3. Our finding that inhibition of FLT3 induces apoptosis of leukemic cells supports the feasibility of targeting FLT3 as a novel treatment strategy for AML.
منابع مشابه
FMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملCytogenetic and FMS-Like Tyrosine Kinase 3 Mutation Analyses in Acute Promyelocytic Leukemia Patients
Background: The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutat...
متن کاملTumor and Stem Cell Biology Stromal Niche Cells Protect Early Leukemic FLT3-ITDþ Progenitor Cells against First-Generation FLT3 Tyrosine Kinase Inhibitors
Targeting constitutively activated FMS-like tyrosine kinase 3 [(FLT3); FLT3-ITD] with tyrosine kinase inhibitor (TKI) in acute myeloid leukemia (AML) leads to clearance of blasts in the periphery but not in the bone marrow, suggesting a protective effect of the marrow niche on leukemic stem cells. In this study, we examined the effect of stromal niche cells on CD34þ progenitors from patients wi...
متن کاملStromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors.
Targeting constitutively activated FMS-like tyrosine kinase 3 [(FLT3); FLT3-ITD] with tyrosine kinase inhibitor (TKI) in acute myeloid leukemia (AML) leads to clearance of blasts in the periphery but not in the bone marrow, suggesting a protective effect of the marrow niche on leukemic stem cells. In this study, we examined the effect of stromal niche cells on CD34(+) progenitors from patients ...
متن کاملThe protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3.
Activating mutations of the protein tyrosine kinase (PTK) FLT3 can be found in approximately 30% of patients with acute myeloid leukemia (AML), thereby representing the most frequent single genetic alteration in AML. These mutations occur in the juxtamembrane (FLT3 length mutations; FLT3-LMs) and the second tyrosine kinase domain of FLT3-TKD and confer interleukin 3 (IL-3)-independent growth to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 8 شماره
صفحات -
تاریخ انتشار 2002